

REPORT OF DISCONTINUOUS EMISSION MEASUREMENTS

of polychlorinated dibenzodioxins and dibenzofurans in the exhaust gas from waste incinerator

Customer:

UAB Gren Klaipeda, Lithuania

Report number:

511/2021

November 19, 2021

Date of measurements: October 21, 2021

Date of issue of report:

Stamp

Ing. Ignác Kožej managing director

EKO-TERM SERVIS s.r.o., Napájadlá 11, 040 12 Košice, Slovakia <u>Laboratory is accredited by SNAS (Slovak National Accreditation Service)</u>, <u>which is the signatory to the ILAC MRA and EA MLA, in the scope of laboratories accreditation</u>. <u>Laboratory fulfils the requirements of the ISO/IEC 17025:2005 and ISO/IEC 17020:1998 standards</u>.

This report may only be reproduced in its entirety and without changes.

CONTENTS

1.	BU	JYER AND OPERATOR	3
	1.1	BUYER	3
	1.2	OPERATOR	3
2.	Μ	EASURING RANGE	3
3.	PA	ARTICIPANTS OF MEASUREMENT	3
	3.1	PERSONNEL OF EKO-TERM SERVIS S.R.O.	3
	3.2	SUBCONTRACTORS	
	3.3	REPRESENTATIVES OF OPERATOR	3
4.	RI	ESULTS OF MEASUREMENTS AND NOTICES	4
	4.1	OVERVIEW OF RESULTS OF THE MEASUREMENTS	4
	4.2	NOTICE OF COMPLIANCE OR NON-COMPLIANCE OF THE REQUIREMENTS	
5.	DI	ESCRIPTION OF EQUIPMENT	
	5.1	CHARACTERISTICS AND PRINCIPLE OF TECHNOLOGY	
	5.2	FUELS AND RAW MATERIALS	
	5.3	WASTE GASES AND APPARATUS FOR REDUCING OF EMISSIONS	5
	5.4	OPERATION MODES AND OPERATIONAL CONDITIONS	6
	5.5	COMPLIANCE ASSESSMENT OF OPERATION COMPARED WITH DOCUMENTATION	6
6.	PF	ROCEDURE AND EVALUATION OF MEASUREMENT	6
	6.1	MEASUREMENT METHODOLOGIES	6
	6.2	COMPARISON OF RESULTS OF MEASUREMENTS IN RELATION TO EMISSION LIMIT	
	VAL	UES	7
(6.3	EVALUATION OF UNCERTAINTY OF MEASUREMENT RESULTS	
(6.4	OPINIONS, INTERPRETATIONS AND RECOMMENDATIONS	7

ABBREVIATIONS

CEMS	- Continuous Emission Monitoring System
ELV	- Emission Limit Value
EN	- European Norm
EV	- Emission Value
ISO	- International Organization for Standardization
I-TEF	- International Toxicity Equivalent Factor
I-TEQ	- International Toxic Equivalent (obtained by multiplying the concentrations and the
	corresponding I-TEF)
PCDD's /PCDF's	- polychlorinated dibenzodioxins and polychlorinated dibenzofurans
U	- relative expanded uncertainty of the measurement

This report contains 7 authorized pages without annexes.

LIST OF AUTHORIZED ANNEXES				
No.	Title	No. of pages		
1	Sites specific protocol	2		
2	Analytical protocols of samples of PCDD's / PCDF's, (from subcontractors)	9		
3	Protocols of the determination of pollutants	1		
4	Diagram of technology	1		
5	Copy of records of waste incinerators	3		
6	Chart of oxygen content during measurement	1		
7	Automatic isokinetic sampling system – PCDD's / PCDF's	1		
8	Comparative tables of working characteristics of measuring instruments	2		
ALT	ALTOGETHER 20			

1. BUYER AND OPERATOR

1.1 BUYER

Name:	UAB Gren Klaipeda, Lithuania
Residence:	Kretainio street 3, LT-94103, Klaipeda, Lithuania
Statutory representative:	Ramunas Jakovlevas – Laboratory work and Safety Engineer
ID:	301 276 531

1.2 OPERATOR

Name:	UAB Gren Klaipeda, Lithuania
Residence:	Kretainio street 3, LT-94103, Klaipeda, Lithuania
Statutory representative:	Ramunas Jakovlevas – Laboratory work and Safety Engineer
ID:	301 276 531

Emission measurements were carried out under the purchase order No. MX28849LTKLJ21 for discontinuous emission measurements of selected pollutants based on an order dated: August 10, 2021.

2. MEASURING RANGE

Measurements were performed from October 21, 2021 in the following range:

- polychlorinated dibenzodioxins and polychlorinated dibenzofurans (PCDD's / PCDF's),
- reference oxygen content and status variables.

Records of preparation measurement is in Annex No. 1.

3. PARTICIPANTS OF MEASUREMENT

3.1 PERSONNEL OF EKO-TERM SERVIS s.r.o.

To the emission measurements participated the following personnel of EKO-TERM SERVIS s.r.o., Košice:

- Ing. Miloš Varga manager of the measurement,
- Ing. Maroš Kožej sampling of PCDD's/ PCDF's,
- Patrik Hrubší, Jaroslav Šuster sampling reference and status parameters.

3.2 SUBCONTRACTORS

The analyses of PCDD's / PCDF's in the samples were performed by subcontracting laboratory - EKOLAB s.r.o. Košice. The protocols were prepared by Mrs. Eva Jusková.

The analytical protocols of the determination of PCDD's / PCDF's issued by subcontracting laboratories are attached in the Annex No. 2 of this report.

3.3 REPRESENTATIVES OF OPERATOR

The measurements were performed by the participation of Mr. Ramunas Jakovlevas, representatives of the operator.

4. RESULTS OF MEASUREMENTS AND NOTICES

4.1 OVERVIEW OF RESULTS OF THE MEASUREMENTS

Table No. 1 - Summary of results of measurements of PCDD's / PCDF's and the oxygen content in flue gas.

Operator:	UAB Gren Klaipeda, Lithuania		
Emission source:	Waste incinerator		
Equipment:	Steam boiler		
Date of measurements:	October 21, 2021		
Pollutant	PCDD's / PCDF's		
Sampling time	[ng-TEQ.m ⁻³] ¹⁾³⁾	[µg-TEQ.h ⁻¹]	
08:54 - 15:00	0,003	0,7	
Umax [%] ³⁾	32	34	

¹⁾ The value of the mass concentration of PCDD's / PCDF's in ng-TEQ.m⁻³ is expressed in standard conditions (101325 Pa; 0 °C) in the dry gas and converted to a reference oxygen content of 11 % vol.

²⁾ The reported expanded uncertainties are based on the standard uncertainty which is multiplied by a coverage factor k = 2. In this case the normal distribution provides a level of confidence approximately 95 %. Uncertainty values are expressed in %.

³⁾ The weight of pollutants was determined by subcontracting analytical laboratory EKOLAB s.r.o. Košice, Slovakia.

Detailed results are given in Annex No. 3 of this report.

4.2 NOTICE OF COMPLIANCE OR NON-COMPLIANCE OF THE REQUIREMENTS

Operator:	UAB Gren Klaipeda, Li	thuania			
Emission source:	Waste incinerator				
Equipment:	Steam boiler				
Date of measurements:	October 20, 2021				
Pollutant	Requirements for compliance of EL ¹⁾	Emission limit ^{1, 2)}	Measured value ²⁾	Verbal notice	
PCDD/PCDF	each average EV≤ EL	0,1 ng.m ⁻³	0,003 ng.m ⁻³	COMPLIANCE	

Table No. 2 – Notice of compliance or non-compliance with the specified requirements.

¹⁾ The requirements for compliance with EL and the EL values are given in DIRECTIVE 2010/75/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 24 November 2010 on the incineration of waste.

²⁾ ELV and EV are expressed by standard state conditions (101,325 kPa, 0 °C), in dry gas and by reference oxygen content 11 % vol.

5. DESCRIPTION OF EQUIPMENT

5.1 CHARACTERISTICS AND PRINCIPLE OF TECHNOLOGY

The company UAB "Fortum Klaipeda", operates waste incineration with the annual capacity of 255 000 tons per year of waste. The incinerator is designed for thermal destruction of solid waste.

The solid waste is stored in a hopper, from there is dosed into the movable grate. Where is waste burn. The ash are transferred the into the ash container. The flue gases from the boiler are kept through the vertical boiler body and subsequently through the super heater and economizer. The boiler is used to produce steam that is used to generate electricity for the own use of the incinerator and for supply to the public network.

The flue gases are then conducted through the gas cleaning system to reduce gaseous pollutants. The ammonia is added on boiler for reduce NO_X . Next step lime and activated charcoal is fed into the flue gas semidry treatment plant. The solid sorbents with the absorbed pollutants are captured in the fabric filter and transported to the ash and dust. The flue gases are further purified in flue gas condenser . The cleaned flue gases are then discharged into the atmosphere.

The primary chimney fan maintains negative pressure in the combustion chamber and also in the gas cleaning facilities. The secondary fan allows recirculation of flue gases.

The technological scheme is given in Annex No. 4 of this report.

The following technological parameters are monitored to control the combustion process and waste gas cleaning:

- amount of dosed solid waste
- the gas temperature in the boiler
- O₂ concentration in the boiler
- dosed amount of ammonia, lime and activate coal.

Detailed results are given in Annex No. 5 and 6 of this report.

5.2 FUELS AND RAW MATERIALS

Incinerated waste:	-	household waste, waste from industry
Stabilizing fuel:	-	natural gas
Sorbents:	-	ammonia, lime, active coal
Wastes from the combustion process		slag, ash from the heat exchanger, ash from the textile ter, waste water, flue gases emitted into the atmosphere.

5.3 WASTE GASES AND APPARATUS FOR REDUCING OF EMISSIONS

Table No. 3 – Equipment nameplate data.

Flue gas fan				
Constructor:	Flakt Woods Oy, Finland			
Туре:	HACB-180-290-LG75			
Serial number:	F500607/010/1			
Year of const.:	2012			
Inlet volume:	101,3 m ³ /s			
Total pressure:	8,5 kPa			
Max. temp. of gas:	200 °C			
Flue gas treatment				
Constructor:	ALSTOM Power Sweden AB			
Order number:	301276531			

Continuation of Table No.3.

Boiler body	
Constructor:	Fisia Babcock Enviroment GmbH
Туре:	KA-01-00848
Year of construction:	2012
Serial number:	8466
Mass flow of steam:	109,2 t/h

5.4 OPERATION MODES AND OPERATIONAL CONDITIONS

- operation mode: one-mode technology
- emission generation: continuous, steady-state technology

5.5 COMPLIANCE ASSESSMENT OF OPERATION COMPARED WITH DOCUMENTATION

Copy of waste incinerator operator record is listed in Annex No. 5 and 6 of this report.

6. PROCEDURE AND EVALUATION OF MEASUREMENT

6.1 MEASUREMENT METHODOLOGIES

The discontinuous emission measurement was planned and carried out under the following methodologies:

Standard reference	life	
ISO 10396	Stationary source emissions - Sampling for the automated determination of gas emission concentrations for permanently-installed monitoring systems.	gaseous pollutants
ISO 16911-2	Stationary source emissions – Manual and automatic determination of velocity and volume flow rate in duck – Part 2	velocity and volume flowrate in duck
EN 14790	Stationary source emissions - Determination of the water vapour in ducts.	water vapour
EN 15259	Air quality - Measurement of stationary source emissions – Requirements for measurement sections and sites and for the measurement objective, plan and report.	measurement
EN 1948-1	Stationary source emissions - Determination of the mass concentration of PCDDs/PCDFs and dioxin-like PCBs - Part 1: Sampling of PCDDs/PCDFs.	PCDD's/PCDF's
EN ISO 11771:2011	Air quality – Determination of time - averaged mass emissions and emission factor. General approach	averaged mass emissions and emission factor
EN 14789	Stationary source emissions - Determination of volume concentration of oxygen (O ₂) - Reference method - Paramagnetism.	O_2
ISO 12039	Stationary source emissions - Determination of carbon monoxide, carbon dioxide and oxygen - Performance characteristics and calibration of automated measuring systems.	CO ₂

Table No. 4 - List of the used methodologies.

The number of individual measurements of emission values was planned in accordance with the recommendation of Directive 2010/75/EC of the European Parliament and the Council of 24 November 2010 on the incineration of waste, as follows:

The measurements of the concentration of PCDD's and PCDF's were performed using an external sampling (extractive) emission measurement system according to internal methodologies and internal working procedures in accordance with EN 1948-1. The determination of PCDD's and PCDF's was carried out by means of apparatus Kalman Systems KS-404 - isokinetic gravimetric. The diagram is shown in Annex No. 7.

The summary tables of used equipment and accessories are listed in Annex No. 8 to this report.

	Kind of operation	Measuring Type of		The number of individ	Evaluation of	
			measurement	Recommended	Reality	sampling conditions
	continuous, steady-state technology	manual	discontinuous	PCDD's/ PCDF's 1 sampling / 6 - 8 hours	PCDD's/ PCDF's 1 sampling / 6,1 hours	compliance

Table No. 5 - Number and duration of samplings.

6.2 COMPARISON OF RESULTS OF MEASUREMENTS IN RELATION TO EMISSION LIMIT VALUES

The following tables show the mass concentrations of individual samples of pollutants in relation to the emission limit values.

Table No. 6 - Results from individual samples of PCDD's / PCDF's - hazardous waste incinerator.

Parameter / sample		Value	Unit	Remark	
Emission limit value (ELV)		0,1	ngTEQ.m ⁻³	-	
blank 1	concentration	0,000	ngTEQ.m ⁻³	control irrigation + filter	
Dialik I	% from ELV	0,4	%	prior to sampling	
comulia o	concentration (at O_2^r)	0,004	ngTEQ.m ⁻³	condensate, PUF and	
sampling	% from ELV	4,4	%	scavenging	
	concentration (at O_2^r)	0,002	ngTEQ.m ⁻³		
control zone	% from ELV	1,6	%	control zone of adsorber of gaseous PCDD's / PCDF's	
control zone	% from total concentration	35,7 ¹⁾	%	- PUF2	
	requirement of standard	< 10	% from total concentration	-1012	
Recovery of sampling standard > 50 %		63	0,001	see Protocols in Annex. 2	
Detection limit	concentration	0,002	ngTEQ.m ⁻³		
Detection limit	% z EL	2	%]-	

¹⁾ The measured value is at the limit of determination. Based on the foregoing, is not fulfilled requirement of standard.

Based on the foregoing, it can declare the results of determination of the mass concentration of pollutants and the determined uncertainties are credible.

6.3 EVALUATION OF UNCERTAINTY OF MEASUREMENT RESULTS

The uncertainties of the results of measurements were evaluated according to the working procedures described in chapter 6.1, Table No. 4 and 5 (combination of uncertainties of sampling and analysis).

6.4 OPINIONS, INTERPRETATIONS AND RECOMMENDATIONS

Result is under value of emission limit, therefore do not included any interpretation of the results.

Annex: 3 / 1

PROTOCOL OF DETERMINING PCDD's AND PCDF's

Order: UAB Gren Klaipeda Emission source: Waste incineration plant		Procurement apparatus: KS-408 Determination of the meth. EN 13284-1, EN 1948-1						
	Steam bo	oiler				1 m		
Date of sampling:	21.10.202	21		Sar	npling time:	8:54 - 15:0)	
Details of the me	asuring s	pot:						
Duct specification:	circle		Area of sampling plane (SP):	3,801	m ²	Duct lenght upstream of th	62,2	m
Duct diameter:	2,200	m	Hydraulic diameter (d _H):	2,200	m	Duct lenght downstream o	5	m
Side A x B:	-	m	Sampling points per sampling	1		Sampling lines:	28,3	

Average values calculated

Variable	Value	e Unit
Atmospheric pressure	10156	60 Pa
Absolute pressure	9904	1 Pa
Humidity of waste gas	6,02	vol. %
Density waste gas (dry gas)	1,344	4 kg.m ⁻³ n
Temperature of waste gas	54,5	°C
Measured O ₂ content	7,20	vol. %
Measured O ₂ content	11	vol. %

Sampling		
Variable	Value	Unit
Total sampling time	6:05	h:mm
Nozzle diameter	5,6	mm
Isokinetic conditions - avera	101	%
Filtering area	31,4	cm ²
Filter efficiency	99,9	%
Nominal sample flowrate	2,01	m _n ³ .h ⁻¹
The lowest vac. in the appa	83340	Pa

Leak test results

Real flow test	80000	Pa
Leak in the apparatus prior to sampling	0,034	m _n ³ .h ⁻¹
% of sample flowrate during sampling	1,7	%
Leak in the apparatus after sampling	0,034	m _n ³ .h ⁻¹
% of sample flowrate during sampling	1,7	%
Leaks criterion of sampling apparatus	≤5	%

Terms of sampling and evaluation

	· · · · · · · · · · · · · · · · · · ·				
Filtration tepmerature	104,6	°C			
Cooler temperature at inlet	52,8	°C			
Cooler temperature at outle	8,4	°C			
Absorber temperature	2,0	°C			
Flowmeter temperature	29,6	°C			
Condensing efficiency	100,0	%			

Sampling standard

Type of standard	¹³ C ₁₂ - 1,2,3,7,8 - PeCDF	
Labeled parts of apparatus	filter, condensation vessel, polyurethane filter	
Used quantity of standard	300 μ l / sample	

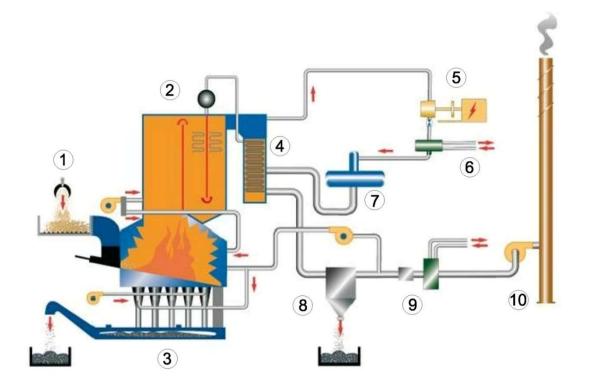
Average velocity of waste gas in duct Average volumetric flowrate at duct (standard conditions, dry gas)

Average volumente nowrate at duct (standard conditions, t

Blank
Sampled volume of waste gas (standard conditions, dry gas)
Total sampled mass PCDD
Mass concentration PCDD
Total sampled mass PCDF
Mass concentration PCDF
Total sampled mass PCDD + PCDF
Mass concentration PCDD + PCDF

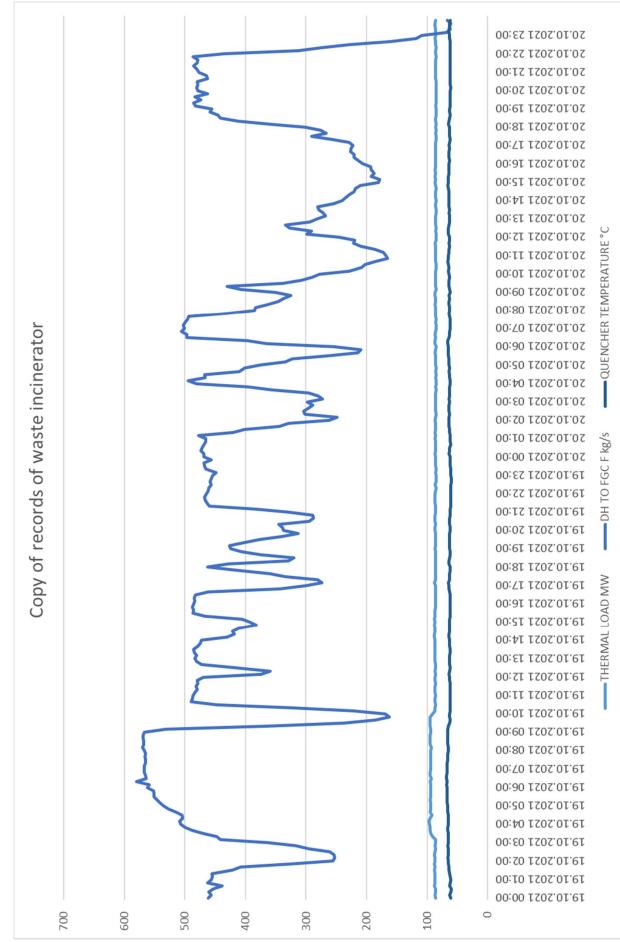
Mass flowrate PCDD + PCDF

Mass concentration PCDD + PCDF (referenced oxygen content 11 % vol.)

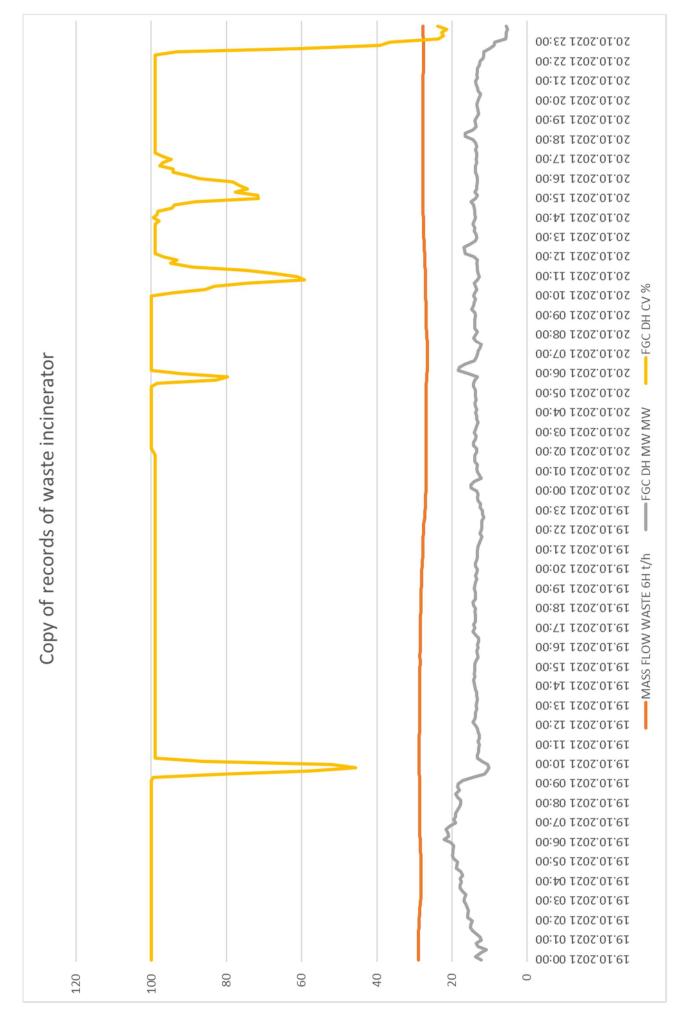

Adsorption stage

Material	PUF		
Dimensions (Φ /lenght)	50/50 mm		
Control zone (Φ /lenght)	50/50 mm		

15,3 160839	m.s⁻¹ m³ _{ns} .h⁻¹	U(k=2) = U(k=2) =		% %
0,000 12,080 0,027 0,002 0,026 0,002	ng-TEQ.m ⁻³			
0,053 0,004 0,702 0,003	ng-TEQ ng-TEQ.m ⁻³ μg-TEQ.h ⁻¹ ng-TEQ.m ⁻³	U(k=2) = U(k=2) = U(k=2) =	32	% % %

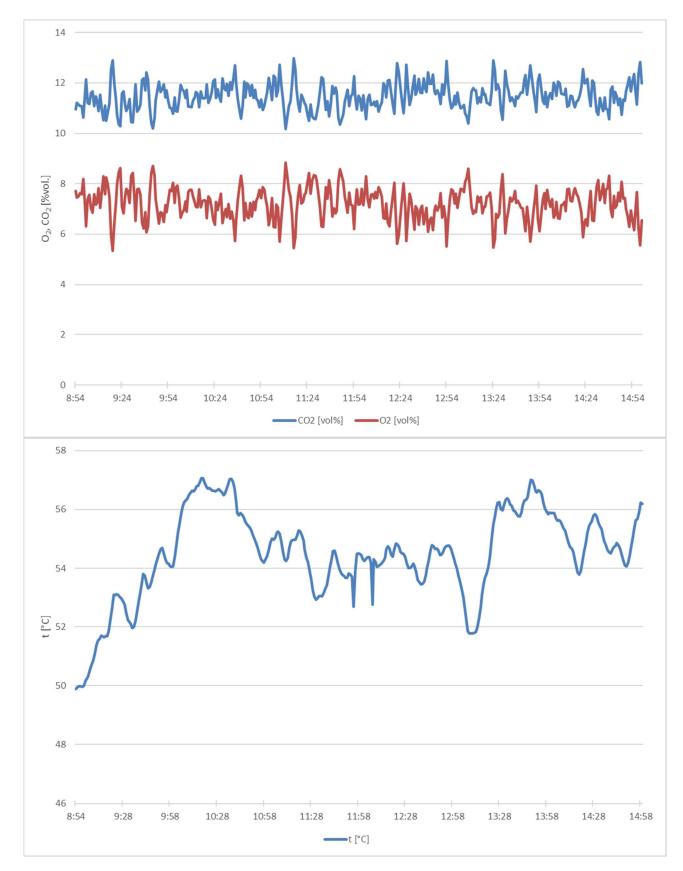

DIAGRAM OF TECHNOLOGY

DESCRIPTION:


- 1. Fuel supply
- 2. Steam boiler
- **3.** Slag handling system
- 4. Economiser
- 5. Steam turbine with generator
- 6. Heat exchanger
- 7. Deaerator
- 8. Flue gas treatment plant
- 9. Flue gas condenser
- 10. Stack



COPY OF RECORDS OF WASTE INCINERATORS



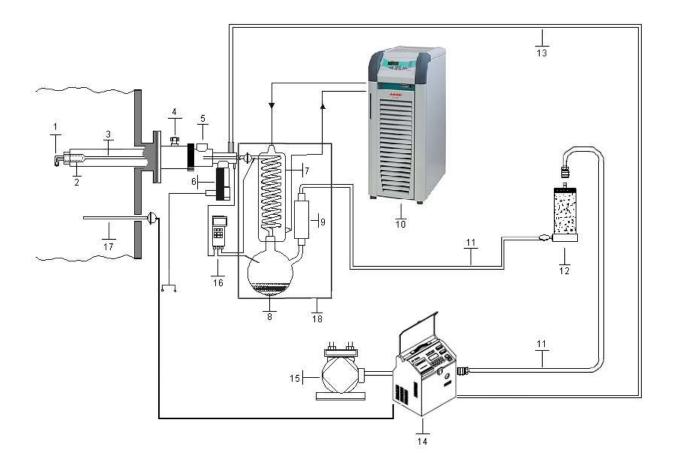


CHART OF O₂, CO₂ AND TEMPERATURE CONTENT DURING MEASUREMENT

AUTOMATIC ISOKINETIC SAMPLING SYSTEM – PCDD's / PCDF's

DESCRIPTION:

- 1. Titan nozzle
- 2. Titan filter holder for thimble diam. 10x110 mm
- 3. Heated probe
- 4. Slide and lock device
- 5. Heating air outlet
- 6. Warm air heater
- 7. Sample cooler
- 8. Condensing vessel
- 9. Titan PUF holder
- 10. Cooler with thermostat
- 11. Silicon/rubber suction tube T_{max} 180 °C diam. 10/18
- 12. Silica gel trap
- 13. Pressure tubing
- 14. Automatic sampler apparatus tecora isostack G4
- 15. Pump with frequency converter
- 16. Thermometer temperature apparatus monitoring (3 channels)
- 17. Thermometer temperature of waste gas
- 18. Condensing and adsorbing box

ſ

COMPARATIVE TABLES OF WORKING CHARACTERISTICS OF MEASURING INSTRUMENTS

the pipe	Requirements of reference methodology:: EN 15259, EN 13284-1, EN 1948-1,4						
Parameter / component	Requirement	Reality	Remark	Validity of the calibration till:			
Suction nozzle	inert, sharp edge, aerodynamic shape, diameter> 4 mm	titanium, sharp edge, aerodynamic shape, inner diameter: 4.5, 5.6, 7.6, 10.7, 14, 17	replaceable, meets dimensional requirements of the standard	-			
Sampling probe	inert, heating of walls of the probe, reasonable length according to the dimension of pipe	titanium interior, heating of the probe through a hot-air fan	integrated with effective length 0,9 m	-			
Filter head	location in the pipeline - heated, knee bending radius > 1.5 d	titanium, placed in pipes - heating is ensured by heating of the outside shell of the probe, tangential input of sample into the filter	Applicable for type of filter: bag filter	-			
Filter	from fibreglass - shape of bubble cap; with separation efficiency greater than 99.5% in the test of separation of aerosol particles with a average diameter of particles 0.3 mm and the highest expected flow	bag filter with glass fibres, the efficiency of 99.99% for particles with diameter $> 0,3$ mm	bag filter 603G □ □ 10 x 110 mm	-			
Flowmeter of sample	dry gas meter, with inaccuracy max. 2% of the volume gas tight	Venturi's flowmeter, gas tight, accuracy: $\pm 2\%$ of the volume	built into the sampling unit, measurement of temperature and pressure of the sample	-			
Suction equipment	Gas pump with regulation to ensure isokinetic sampling, accuracy \pm 5%	vacuum pump with automated flow control of sample	Lamellar pump, BECKER, Germany; output 8 m ³ .h ⁻¹	-			
Moisture separator	condenser, dryer residual moisture less than 10 g/m ³	counter condensing spiral cooler, + drying tower with silica gel	separation efficiency min. 95 %, residual moisture < 10 g/m ³	-			
Temperature in sampling apparatus	thermocouple, thermometer, inaccuracy max. $\pm 1\%$	resistance thermometer Pt100 accuracy: ± 0,3 %	-	25.5.2022			
Temperature of gas in pipeline	thermocouple, inaccuracy max. $\pm 1 \%$	thermocouple type K measuring range: $0 - 600$ °C accuracy: $\pm 0,1$ % (at t = 500 °C)	Thermocouple with compensation, connected to control device KS 404	24.5.2022			
Absolute pressure in the pipeline	liquid manometer, analogue, digital manometer, inaccuracy max. $\pm 0.5\%$ of absolute pressure	pressure transducer range: 0-2 bar, accuracy: ± 0.15%	pressure transducer Sensor Technics SCX3OAN	23.3.2022			
Gas velocity in the pipeline - the measurement of differential pressure with Pitot-Prandtl probe and micromanomet er	liquid micromanometer, analogue, digital micromanometer with the capability of reading from 5 Pa	pressure transducer of differential pressure	pressure transducer of differential pressure SCXL004DN - Sensor Technics	06.6.2022			
	Pitot-Prandtl probe - standard, Type L	range: 0 to 12 mbar, resolution: from 5 Pa, accuracy: \pm 0.06 mbar, Pitot probe type L	Pitot probe - Type L - integrated in the sampling probe	23.5.2022			
Stopwatch	periodic record of sampling values (v ₁ , t ₁ , q ₂ , t ₂ , t _{filter}) - min. every 15 minutes	software and hardware time	Software AR-IZO 404	_			
Scales	ability to weigh the silica gel tower	scales able to weigh the silica gel (0 to 2000 g) Umax = 0.6 grams	digital scales SARTORIUS BL 210 S-OCE	17.7.2022			

Report number: 511/2021

EKO-TERM SERVIS s.r.o., Košice Date of issue of report: November 19, 2021 Annex: 8 / 2

Pollutants: PCI	DD's / PCDF's					
	ciple: isokinetic filter-condensation	on method without subdivision of	sampling flow with filtration in the	e pipe / outside		
the pipe Parameter / component	Requirements of reference methodology:: EN 15259, EN 13284-1, EN 1948-1,4					
	Requirement	Reality	Remark	the calibration till:		
Adsorbent	XAD-2, PU foam, Porapak PS, Florisil or solid adsorbents with adsorption efficiency at least 90%	solid adsorbent: PUR foam	□ =33g.l ⁻¹ , □ 47x50 mm, made from toluene-2,4-diisocyanate / toluene-2 ,6-diisocyanate (TDI) and polyoxy-prophylentriol	-		
Case for solid sorbent	inert	inert	Material: titanium / glass	-		
Cooling equipment	cooling, T< 20°C	Circulating cooling equipment Julabo FL 300 or Minichiller HUBER	Working temperature range (- 20 ° C to +40 ° C)	-		
Condenser	inert, cooling, T< 20°C	inert, cooling to temperature below 20 ° C by circulating cooling device	spiral condensing glass piece	-		
Condensing flask	inert	inert, glass	volume 2 litters	-		
Temperature filtration, condensation temperature input, oupt	thermocouple, thermometer, inaccuracy max. ± 1%	Four chanel thermometer, with thermocouple type K measuring range: -200 – 1370 °C	Four chanel thermometer, with thermocouple type K Serial number 150806553, calibration certifitace number 217/16/148/16/13	11.03.2022		

Emission measuring system: HORIBA, PG 350 E										
Measuring principle: NDIR and paramagnetizm (O ₂)										
EMS	Serial No.		Year		ŀ	Recalibration		Calibration		07.04.2022
Portable PG 350E	WF6R	WF6RLAE0		2015 inter		internal	V		lidity	07.04.2022
Component / range	1.	2.	3.	4.		5.	6.		7.	Compliance with Standard
$SO_2[mg.m_n^{-3}]$	0 to 715	0 to 1430	0 to 2860	0 to 858	30	-	-		-	ISO 7935
NO _X [mg.m _n ⁻³]	0 to 51	0 to 102	0 to 205	0 to 512	2	0 to 1025	0 t	o 2050	0 to 5125	EN 14792
CO [mg.m _n - ³]	0 to 250	0 to 625	0 to 1250	0 to 250	00	0 to 6250		-	-	EN 15058
CO ₂ [% vol.]	0 to 10	0 to 20	0 to 30	-		-		-	-	ISO 12039
O ₂ [% vol.]	0 to 5	0 to 10	0 to 25	-		-	-		-	EN 14789
Equipment parts										•
Parts	Notes									
Sampling probe	probe length $(0,5-2,0)$ m material, stainless steel - AISI-316, max. 600 °C, $\Phi = 8$ mm,									
Sampling system	regulated temperature of sampling hose $(0 - 200)$ °C material PTFE, $\Phi = 6/8$ mm,									
Gas conditioning system	Ceramic dust filter , 200 °C, efficiency = $\eta \ge 99$ %, particles $\ge 2 \mu m$. Peltier condenser + membrane pump									
Data logger	integrated data logger									